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The use of series cannot be undermined. I was exploring what could be a nice way 

to evaluate or estimate the area trapped between the graphs of y = xx andy= x-x 

in (0,1], without the use of software. In this article, I proved that the desired area 
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could be represented by the series 2 L (
2

k )k. 
k=1 

Note that this series converges very rapidly, 

from just the first 4 terms, we can obtain 

a very good estimate of the area, which is 

about 0.507855486. Let us start by looking 

at the two curves. The area enclosed is 
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00 uk 00 (-x ln x)k 
Since eu ="""'-for -oo < u < oo therefore e-xinx ="""' for x > 0. 

L..t k! ' L..t k! 
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Hence, x-x dx = e-xinx dx = """' dx. 11 11 11 oo (-xlnx)k 

0 0 0 L..t k! k=O 

By Uniform Convergence Theorem, we can interchange the integral and summation 

operations. Thus, 

11 00 ( -1 )k 11 
x-xdx= L:-- (xlnx)kdx. 

0 k! 0 k=O 

Integral Calculus tells us that 

r1 k (-1)kk' 
Jo (x ln x) dx = (k + 1)k+1 for k = 0, 1, 2, ... 

Hence, 
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Similarly, we can conclude that xx dx = L - kk 
0 k=l 

Therefore, the desired 

area is 

I would like to end by posing two problems to the readers. Prove the following. 
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(i) (exp(exp( -xa))- 1) dx = -r(-) L a~' for a> 0. 
0 a a k=O k! vk 

100 fo 00 1 
(ii) (exp(exp( -x2

))- 1) dx = -{- L 
1 
~· 

0 k = O k.y k 

Note that the series in (ii) could probably lead us to explore some interesting aspects 
of 1r. 


